Faster Orthogonal Parameterization with Householder Matrices

Alexander Mathiasen! Frederik Hvilshgj' Jakob Redsgaard Jgrgensen' Anshul Nasery'!? Davide Mottin '

Abstract

Orthogonal matrices have been used in several
Normalizing Flows (Tomczak & Welling, 2016;
van den Berg et al., 2018).Orthogonal matrices
are attractive since they are easy to invert and have
Jacobian determinant one. Their main downside
is the additional computational resources required
to perform gradient descent. We identify a com-
putational bottleneck for previous work on House-
holder matrices, and introduce a novel algorithm,
FastH, which circumvents the bottleneck and is
up to 29 faster than a previous method.

1. Introduction

Normalizing Flows (NF) are a type of generative model with
several attractive properties like exact likelihood, fast sam-
pling and substantial memory savings (Kingma & Dhariwal,
2018). They are capable of representing complicated distri-
butions by transforming a simple base distribution z ~ P,
through an invertible neural network f to attain a model
distribution f(z) ~ Pp,odel- The exact likelihood pyoder ()
can then be computed through a change of variable formula
due to the invertibility of f.

This has motivated much research into invertible neural
networks. However, the change of variables formula also
require the computation of the Jacobian determinant of f.
Previous research thus attempt to design invertible neural
networks which also allow efficient computation of their
Jacobian determinant. This makes orthogonal matrices very
attractive, since they are easy to invert U~ = U and have
unit Jacobian determinant | det(OUx/0x)| = 1.

Perharps unsurprisingly, much previous work adopt orthog-
onal matrices in their construction of Normalizing Flows
(Tomczak & Welling, 2016; van den Berg et al., 2018;
Hoogeboom et al., 2019; Golinski et al., 2019). However,
the use of orthogonal matrices introduce one complication.

! Aarhus University “Indian Institute of Technology, Bom-
bay. Correspondence to: Alexander Mathiasen <alexan-
der.mathiasen @ gmail.com>.

Second workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models (ICML 2020)

—— FastH (ours) —— Householder = —— Cayley — Exp
0.06 N
S
c 29.8%
S 0.04
(]
(2]
£ 5.6x
(] 4
£ 0.02
= /_/_/__,_
0.00 : — ; : ;
200 400 600 800 1000

Size of matrix d

Figure 1. Comparison of previous approaches, see Section 4.

One needs to perform gradient descent wrt. weight matri-
ces that are constrained to be orthogonal. Previous work
solve this issue using different methods which can roughly
be divided into three groups: matrix exponential, Cayley
transform and Householder matrices.

The Householder method has the best time complexity for
multiplying U - X where U € R4*¢ is an orthogonal matrix
and X € R™™ is a mini-batch with m examples. In partic-
ular, the Householder methods take O(d?*m) time compared
to O(d? + d*m) time for both alternative methods. For
1 < m < d the Householder method is thus O(d/m) times
faster. Contrary to the superior time complexity, we find
that methods based on the Householder method are often
slower on GPUs in practice, see Figure 1.

We identify the algorithmic issue which causes the discrep-
ancy between theory and practice. It turns out that the
previous Householder methods entails the computation of
O(d) sequential inner products, which is ill-fit for parallel
hardware like a GPU because the GPU cannot utilize all its
cores. For example, if a GPU has 4000 cores and computes
sequential inner products on 100-dimensional vectors, it can
only utilize 100 cores simultaneously, leaving the remaining
3900 cores to run idle.

We introduce a novel algorithm, FastH, which increases core
utilization, leaving less cores to run idle. FastH retains the
desirable O(d?m) time complexity, while reducing the num-
ber of sequential operations. On a mini-batch of size m > 1,
FastH performs O(d/m + m) sequential matrix-matrix op-
erations instead of O(d) sequential vector-vector operations.
In practice, FastH is faster than all previous methods, see
Figure 1. Code: https://github.com/alexandermath/fasth.

https://github.com/alexandermath/fasth

Faster Orthogonal Parameterization with Householder Matrices

2. Background

In this section, we sketch the method based on Householder
matrices, and explain its computational bottleneck. A matrix
U € R¥4 s orthogonal if UT = U~'. All orthogonal
d x d matrices can be decomposed into a product of d
Householder matrices Hy, ..., Hg (Uhlig, 2001):

d T

v=[[H H=1-2_"

d

A v; €RY (1)
Householder matrices satisfy several useful properties. In
particular, the matrix U remains orthogonal under gradi-
ent descent updates v; = v; — nV,, (Mhammedi et al.,
2017). Furthermore, all products of Householder matrices
are orthogonal, and any d x d orthogonal matrix can be
decomposed as a product of d Householder matrices (Uh-
lig, 2001). Householder matrices thus allow us to perform
gradient descent over all orthogonal matrices.

Multiplication. Normal matrix multiplication UX for
matrices U € R¥*? X € R¥™ takes O(d?m) time. This
is also true when U is a product of d Householder matrices.
The product UX = Hy--- (Hg_1(Hg - X)) can be com-
puted by d Householder multiplications. If done sequen-
tially, as indicated by the parenthesis, each Householder
multiplication can be computed in O(dm) time (Zhang et al.,
2018). All d multiplications can then be done in O(d?*m)
time, no more than computing U X normally.

However, the O(d?m) time complexity requires us to mul-
tiply each Householder matrix sequentially. Each House-
holder multiplication entails computing an inner product,
see Equation (1), which means the multiplication U X re-
quires the computation of O(d) inner products sequentially.
Such sequential computation of inner products is slow on
parallel hardware like GPUs.

Our main contribution is a novel parallel algorithm, FastH,
which resolves the issue with sequential inner products with-
out increasing the time complexity. FastH takes O(d?m)
time but performs O(d/m + m) sequential matrix-matrix
operations instead of O(d) sequential vector-vector oper-
ations (inner products). In practice, FastH is up to 29x
faster than the normal sequential Householder method, see
Figure 1 and Section 4.1.

Mathematical Setting. The number of sequential matrix-
matrix and vector-vector operations is simply counted. We
count only once when other sequential operations can be
done in parallel. For example, processing v1, ..., vq/2 se-
quentially while, in parallel, processing vq 241, ..., Vg S€-
quentially, we count d/2 sequential vector-vector opera-
tions.

3. A Parallel Algorithm

3.1. Forward Pass

Our goal is to create an O(d?m) algorithm with few sequen-
tial operations that solves the following problem: Given
an input X € RY*™ with d > m > 1 and Householder
matrices Hy, ..., Hg, compute the output A = Hy --- Hg X.
For simplicity, we assume m divides d.

Since each H; is a d x d matrix, it would take O(d?) time
to read the input H1, ..., Hg. Therefore, we represent each
Householder matrix H; by its associated Householder vector
v; as in Equation (1).

A simplified version of FastH proceeds as follows: divide
the Householder product H; - - - H; into smaller products
Py -+ Py so each P is a product of m Householder ma-
trices:

Pi :H(v—l)nr+1H7,m 1= 1,,d/m (2)

All d/m products P; can be computed in parallel. The out-
put can then be computed by A = Py - -+ Py/,, X instead of
A = H,--- HyX, which reduces the number of sequential
matrix multiplications from d to d/m.

This algorithm computes the correct A, however, the time
complexity increases due to two issues. First, multiplying
each product P; with X takes O(d?m) time, a total of O(d?)
time for all d/m products. Second, we need to compute all
d/m products P, ..., Py/p, in O(d*m) time, so each prod-
uct P; must be computed in O(d*m/(d/m)) = O(dm?)
time. If we only use the Householder structure, it takes
O(d*m) time to compute each P;, which is not fast enough.

Both issues can be resolved, yielding an O(d?m) algorithm.
The key ingredient is a linear algebra result that dates back
to 1987. The result is restated in Lemma 1.

Lemma 1. (Bischof & Van Loan, 1987) For any m House-
holder matrices Hy, ..., H,, there exists W,Y € R¥™ st

I—-2wYT =H,---H,,

Both W and 'Y can be computed by m sequential House-
holder multiplications in O(dm?) time.

Proof. See (Bischof & Van Loan, 1987) Method 2. O]

For completeness, we provide pseudo-code in Algorithm 1.
Theorem 1 states properties of Algorithm 1 and its proof
clarify how Lemma 1 solves both issues outlined above.

Theorem 1. Algorithm I computes
Hy---H;X

in O(d*m) time with O(d/m + m) sequential matrix multi-
plications.

Faster Orthogonal Parameterization with Householder Matrices

Algorithm 1 FastH Forward

Input: X € R™™ and Hy, ..., H; € R4¥4,
Olltpllt: A1 = P1 Pd/nLX = Hl HdX

/] Step 1
for i = d/m to 1 do in parallel

Compute Y;, W; € R¥*™ such that > O(dm?)
P =1-2W;y,"
by using Lemma 1.
end for
/I Step 2
Ad/m+1 =X.
for i = d/m to 1 do sequentially
Ai = Ai+1 — 2WZ‘(Y;TA1‘+1) . > O(de)
end for
return A;.

Proof. Correctness. Each iteration of Step 2 computes

A= Aipr —2Wi (Y Ai)

=PFA;. By Lemma 1
Therefore, at termination, Ay = Py --- P, /mX . In Step 1,
we used Lemma 1 to compute the P;’s such that A =
Hy--- HyX as wanted.

Time complexity. Consider the for loop in Step 1. By
Lemma 1, each iteration takes O(dm?) time. Therefore, the
total time of the d/m iterations is O(dm?d/m) = O(d*m).

Consider iteration ¢ of the loop in Step 2. The time of the
iteration is asymptotically dominated by both matrix mul-
tiplications. Since A;;1, X; and Y; all are d x m matrices,
it takes O(dm?) time to compute both matrix multiplica-
tions. There are d/m iterations so the total time becomes
O(dm?d/m) = O(d*m).

Number of Sequential Operations. Each iteration in Step
2 performs two sequential matrix multiplications. There are
d/m sequential iterations which gives a total of O(d/m)
sequential matrix multiplications.

Each iteration in Step 1 performs m sequential Householder
multiplications to construct P;, see Lemma 1. Since each
iteration is run in parallel, the algorithm performs no more
than O(d/m + m) sequential matrix multiplications. ~ [J

Remark. Supplementary Material 8.1 extends this sec-
tions techniques to compute gradient, see Algorithm 2. For
simplicity, this section had Algorithm 1 compute only A,
however, in Algorithm 2 it will be convenient to assume
Ay, ..., Agq/m are precomputed. Each A; = P;--- Py, X
can be saved during Step 2 of Algorithm 1 without increas-
ing asymptotic memory consumption.

3.2. Extensions

Trade-off. Both Algorithm 1 and Algorithm 2 can be ex-
tended to take a parameter k that controls a trade-off be-
tween total time complexity and the amount of parallelism.
This can be achieved by changing the number of House-
holder matrices in each product P; from the mini-batch size
m to an integer k. The new algorithm takes O(d?k + d*>m)
time, O(d?m/k) space and has O(d/k + k) sequential ma-
trix multiplications. This extension has the practical benefit
that one can try different values of k£ and choose the one that
yields superior performance on a particular hardware setup.
The number of sequential matrix multiplications O(d/k+k)
is minimized when k = O(+/d). For a constant ¢ > 1, we
can find the best k € {2,3, ..., c[v/d]} by trying all O(+/d)
values. The search needs to be done only once and takes
O(Vd(d*k + d®>m)) = O(d® + d*°m) time. In practice,
this time is negligible, e.g., on the hardware we describe in
Section 4 it took less than 1s for d = 784.

4. Experiments

To simulate a realistic machine learning environment, we
performed all experiments on a standard machine learning
server using a single NVIDIA RTX 2080 Ti.

4.1. Comparing Running Time

This subsection investigates the time it takes for FastH to
perform a gradient descent update wrt. an orthogonal ma-
trix. The time of FastH is compared against four alternative
algorithms. The first two alternatives are methods based
on the matrix exponential and the Cayley map respectively
(Golinski et al., 2019). The next two alternatives are the
sequential and parallel algorithms from (Zhang et al., 2018),
which both rely on Householder matrices like FastH. Both
articles open-sourced their implementations which we use
in our experiments.'?

The performance of the sequential algorithm is particularly
interesting, because it is the same algorithm most previous
work on Normalizing Flows adopt (Tomczak & Welling,
2016; van den Berg et al., 2018; Hoogeboom et al., 2019).
The only difference is that (Zhang et al., 2018) implemented
the algorithm in CUDA instead of PyTorch (Paszke et al.,
2019) or TensorFlow (Abadi et al., 2015).

We measure the time of a gradient descent step with a weight
matrix W € R4 and a mini-batch X € R*™_ where
m=32andd = 1-64,2-64,...,48 - 64. We ran each
algorithm 100 times, and we report mean time p with error
bars [— o, 1 + o] where o is the standard deviation of
running time over the 100 repetitions.

Uhttps://github.com/zhangjiong724/spectral-RNN
Zhttps://github.com/Lezcano/expRNN

https://github.com/zhangjiong724/spectral-RNN
https://github.com/Lezcano/expRNN

Faster Orthogonal Parameterization with Householder Matrices

Figure 2 depicts the running time on the y-axis, as the size
of the d X d matrices increases on the x-axis. For d > 64,
FastH is faster than all previous approaches. At d = 64
FastH is faster than all previous approaches, except the
parallel algorithm. FastH is even faster at d = 3000 than
the Sequential algorithm at d = 400. To put the matrix sizes
into perspective, we mention that previous work employ,
e.g., d = 192 in (Kingma & Dhariwal, 2018) or in d = 784
(Zhang et al., 2018).

I
©
g 0.15 4 : i:g:;eyntial
"
_5 0.10 4{ —— Exponential 6.2 faster
E 0.05

0.00

500 1000 1500 2000 2500 3000
Size of matrix d

Figure 2. Running time of different algorithms for d x d matrices.
FastH is fastest when d > 64. The sequential algorithm from
(Zhang et al., 2018) crashed when d > 448.

5. Related Work

The Householder Decomposition. The Householder de-
composition of orthogonal matrices has been used in much
previous works, for example, (Tomczak & Welling, 2016;
Mhammedi et al., 2017; Zhang et al., 2018; van den Berg
et al., 2018; Hoogeboom et al., 2019). Previous work typi-
cally use a type of sequential algorithm that performs O(d)
sequential inner products. To circumvent the resulting long
computation time on GPUs, previous work often suggest
limiting the number of Householder matrices, which limits
the expressiveness of the orthogonal matrix, introducing a
trade-off between computation time and expressiveness.

FastH takes the same asymptotic time as the sequential
algorithm, however, it performs less sequential matrix oper-
ations, making it up to 29x faster in practice. Since FastH
computes the same output as the previous sequential algo-
rithms, it can be used in previous work without degrading
the performance of their model. In particular, FastH can be
used to either (1) increase expressiveness at no additional
computational cost or (2) speed up previous applications at
the same level of expressiveness.

Different Orthogonal Parameterizations. Previous
work explore different approaches to orthogonal param-
eterizations, including methods based on Householder
matrices (Mhammedi et al., 2017), the matrix exponential
(Lezcano-Casado & Martinez-Rubio, 2019) and the Cayley
map (Golinski et al., 2019).

(Golinski et al., 2019) raised a theoretical concern about the
use of Householder matrices. The methods based on the
matrix exponential and the Cayley map have desirable prov-
able guarantees, which currently, it is not known whether
the Householder decomposition possess. This might make it
desirable to use methods based on the matrix exponential or
the Cayley map instead of using methods based on House-
holder matrices. However, the methods based on matrix
exponential and Cayley map use O(d?) time to construct the
orthogonal matrix, which the Householder method circum-
vents. This allows Householder methods to perform faster
multiplications. In particular, for a mini-batch X € R¥*™,
methods based on Householder matrices can compute the
product in O(d?m) time, O(d/m) times faster.

Determinants and Matrix Decompositions. (Kingma &
Dhariwal, 2018) propose to speed up determinant computa-
tions by using the PLU decomposition W = PLU where
P is a permutation matrix and L, U are lower and upper
triangular. This allows the determinant computation in O(d)
time instead of O(d®). (Hoogeboom et al., 2019) point
out that a fixed permutation matrix P limits flexibility. To
fix this issue, they suggest using the QR decomposition
where R is a rectangular matrix and @) is orthogonal. They
suggest making () orthogonal by using the Householder
decomposition which FastH can speed up.

6. Code

To make FastH widely accessible, we wrote a PyTorch
implementation 'nn.Orthogonal’ which can be used like
‘nn.Linear’. Besides implementing the default *forward’
function, it also contains functions for inverse and log Jaco-
bian determinant’. While implementing FastH, we found
that Python did not provide an adequate level of paralleliza-
tion. We therefore implemented FastH in CUDA to fully
utilize the parallel capabilities of GPUs. Our code can be
found at https://github.com/alexandermath/fasth.

7. Conclusion

We identified an algorithmic issue with the previous use of
Householder matrices in Neural Networks. FastH mitigates
the issue, and is up to 29x faster in practice, without intro-
ducing any loss of quality. In other words, FastH computes
the same thing as the previous algorithms, just faster. FastH
can thus be used to speed up Neural Networks like (Tomczak
& Welling, 2016; van den Berg et al., 2018; Hoogeboom
et al., 2019) without any downsides.

31t just needs to return 0 = lg | det (AU x/dx) |.

https://github.com/alexandermath/fasth

Faster Orthogonal Parameterization with Householder Matrices

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, 1., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Wat-
tenberg, M., Wicke, M., Yu, Y., and Zheng, X. Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous
Systems, 2015. URL https://www.tensorflow.
org/. Software available from tensorflow.org.

Bischof, C. and Van Loan, C. The WY Representation for
Products of Householder Matrices. SIAM Journal on
Scientific and Statistical Computing, 1987.

Golinski, A., Lezcano-Casado, M., and Rainforth, T. Im-
proving Normalizing Flows via Better Orthogonal Param-
eterizations. In ICML Workshop on Invertible Neural
Networks and Normalizing Flows, 2019.

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. The
Reversible Residual Network: Backpropagation Without
Storing Activations. In NIPS, 2017.

Hoogeboom, E., van den Berg, R., and Welling, M. Emerg-
ing Convolutions for Generative Normalizing Flows. In
ICML, 2019.

Kingma, D. P. and Dhariwal, P. Glow: Generative Flow
with Invertible 1x1 Convolutions. In NeurIPS. 2018.

Lezcano-Casado, M. and Martinez-Rubio, D. Cheap Or-
thogonal Constraints in Neural Networks: A Simple
Parametrization of the Orthogonal and Unitary Group.
In ICML, 2019.

Mhammedi, Z., Hellicar, A., Rahman, A., and Bailey, J.
Efficient Orthogonal Parametrisation of Recurrent Neu-
ral Networks Using Householder Reflections. In ICML,
2017.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An Imperative Style,
High-Performance Deep Learning Library. In NeurlPS.
2019.

Tomczak, J. M. and Welling, M. Improving Variational
Auto-Encoders using Householder Flow. arXiv preprint,
2016.

Uhlig, F. Constructive Ways for Generating (Generalized)
Real Orthogonal Matrices as Products of (Generalized)
Symmetries. Linear Algebra and its Applications, 2001.

van den Berg, R., Hasenclever, L., Tomczak, J., and Welling,
M. Sylvester Normalizing Flows for Variational Infer-
ence. In UAI 2018.

Zhang, J., Lei, Q., and Dhillon, I. Stabilizing Gradients for
Deep Neural Networks via Efficient SVD Parameteriza-
tion. In ICML, 2018.

https://www.tensorflow.org/
https://www.tensorflow.org/

Faster Orthogonal Parameterization with Householder Matrices

8. Supplementary Material
8.1. Backwards Propagation

This subsection extends the techniques from Section 3.1
to handle gradient computations. Our goal is to create
an O(d?*m) algorithm with few sequential operations that

solves the following problem: Given Ay,..., Ag/m1,

Py, Pym and for some loss function L compute

9L and ng N ng , where v; is a Householder vector st.
d

each Householder matrix is H; = I — 2v;

vy /v 13-

Since each P; is a d x d matrix, it would take O(d®/m)
time to read the input P, ..., Py/.,. Therefore, we represent
each P; by its WY decomposition P; = I — 2W YT,

On a high-level FastH has two steps.

oL OL oL

Step 1. Sequentially compute BA3 DAs DAgyy by
oL [94, 1" oL 1 0L)
DA |0Ai] 04; T 0A;

This also gives the gradient wrt. X since X = Ag/p,41-

Step 2. Use 2 AT A 1 A from Step 1 to compute the

gradient) L for all j. ThlS problem can be split into d/m

subproblems, which can be solved in parallel, one subprob-
lem for each %.

Details. For completeness, we state pseudo-code in Algo-
rithm 2, which we now explain with the help of Figure 3.

Figure 3a depicts a computational graph of Step 1 in Algo-
rithm 2. In the figure, consider 2 A A and PT, which both
have directed edges to a multiplication node (denoted by -).
The output of this multiplication is <5~ by Equation (3).

oL
This can be repeated to obtain 94503 Ad/7n+1

Step 2 computes the gradient of all Householder vectors 5 ‘%

This computation is split into d/m distinct subproblems that
can be solved in parallel. Each subproblem concerns 88 j

and the product F;, see line 10-12 in Algorithm 2.

To ease notation, we index the Householder matrices of P;
by P; = H1 H . Furthermore, we let Am+1 = Az+1
and A = H AJH The notation implies that A1 =
ﬁl o H Am+1 = P;A;+1 = A;. The goal of each sub-
problem is to compute gradients wrt. the Householder vec-
tors Upy, ... v1 of H,,, .. H 1. To compute the gradient of
v;, we need AJ+1 and , which can be computed by:

~

Aj = H;lAj = HT 4, 4)
~ T
oL _ | 94; OL _ zr oL (5)
A1 |0A; | 04; 7 04

Algorithm 2 FastH Backward

1: Input: Al, . Ad/m+17 Py, .. Pd/m and BQTL .
2: Output and for all k where H, = I —2 ll]:sz)lllz'
2
3:
4: // Step 1
5: for i = 1 to d/m do sequentially
6 garr =Pl Pt eq. (3). > O(dm?)
7: end for
8:
9: // Step 2
10: for i = 1 to d/m do in parallel
. oL _ (oL
11: LetaA1 (8Ai)' R R
12: To ease notation, let P; = Hy --- H,,.
13: for j =1tomdo
14: Compute AJH, 8A , €Qs. (4) and (5). > O(dm)
15: Compute - L ysing AJH, A, L eq. (6). > O(dm)
16: end for
17: end for
18: return 9% = dAf/mﬂ and - aL -forall k =1,...,d.

AEL
7 OAm1

Given Aj_H and

Figure 3b depicts how Eg, Am+1 and == 8A e

can be computed given A1 and B‘F)AL .

oL
DA
Mhammedi et al., 2017). For completeness, we restate the
needed equation in our notation, see Equation (6). Let a®
be the I’th column of 4, and let g be the I’th column
of ;jf . The sum of the gradient over a mini-batch of size
m is then:

1
, We can compute er- as done in (Zhang et al., 2018;

Z ila g® + (o7 g(l))a(l) (6)

2

|2 I=1
SN MONE RO
51137 ! !

Theorem 2 states properties of Algorithm 2.

Theorem 2. Algorithm 2 computes 8X L and ng R gTL in

O(d?*m) time with O(d/m + m) sequential matrix multipli-
cations.

Proof. Correctness. FastH computes gradients by the same
equations as (Zhang et al., 2018), so in most cases, we show
correctness by clarifying how FastH computes the same
thing, albeit faster.

Faster Orthogonal Parameterization with Householder Matrices

Lo b DL 0L (oL \(oLy oL L
22 ()‘4d/m+l . ()Ad/m .()Ad/m—rl ,,(‘)AH’l . 044@ . 04y . 0A
¢T]t ! T ?T
Rl/m Pz]/mfl R Pl
Rl m Rl m—1]7, P1
R (A S Sy S
) "41/ m+1 "41/ m ‘4(/ m—1 44/4»1 44/ *42 fll

(a) Step 1: Sequential part of Algorithm 2.

T BV VA A A T
Aiv1) — Ay 0Am 94jn ?jj 04y 94 04;
oT ur oT
I-Ilm [—Il-j Pil
Ai+1 = Am+1 An Aj+1 A] Ay A=A

(b) Step 2: The ¢’th subproblem in Algorithm 2.

Figure 3. Computational graph of Step 1 and the 7’th subproblem in Step 2 from Algorithm 2.

Consider g—f{ computed in Step 1:

oL _ o
0X 0Aujmi1

:P(;f/m...p1 W

oL
:HdTmHlTa—Al. eq. (2)

This is the same as that computed in (Zhang et al., 2018).

Consider Step 2. Both % and e;%
J Y

~

are computed as

done in (Zhang et al., 2018). A;,; is computed using
Equation (4) similar to backpropagation without storing
activations, (Gomez et al., 2017), but using the fact that
HT — g1

J j -

Time Complexity. In Step 1 the for loop performs d/m
matrix multiplications. Due to the WY decomposition
PI = (I -2wYT)T = [— 2YW? which can be multi-
plied on 6‘% € R¥™ in O(dm?) time since W, Y € R4*™,
The computation is repeated d/m times, and take a total of

O(d*m) time.

Step 2 line 14 performs two Householder matrix multiplica-
tions which take O(dm) time, see Equations (4) and (5). In
line 15 the gradient is computed by Equation (6), this sum
also takes O(dm) time to compute. Both computations on
line 14 and 15 are repeated d/m - m times, see line 10 and
line 13. Therefore, the total time is O(d*m).

Number of Sequential Operations. Step 1 performs
O(d/m) sequential matrix operations. Lines 13-16 of Step
2 perform O(m) sequential matrix multiplications. Since
each iteration of line 10-17 is run in parallel, the algorithm
performs no more than O(d/m + m) sequential matrix mul-
tiplications. O

8.2. Implementation Details

The parallel algorithm from (Zhang et al., 2018) halted for
larger values of d. The failing code was not part of the main
computation. This allowed us to remove the failing code and
still get a good estimate of the running time of the parallel
algorithm. We emphasize that removing the corresponding
code makes the parallel algorithm faster. The experiments
thus demonstrated that FastH is faster than a lower bound
on the running time of the parallel algorithm.

